The Mathematics of Corporate Insurance

John Birkenhead CMath FIMA

“Insurance goes Dating with Science” showed how the
insurance industry is making more and more use of complex
mathematics, computer modelling and gigabytes of data.

In this article we take an introductory look at some of the chal-
lenges facing mathematicians working in the field of corporate
insurance and show how corporate insurance is a blend of
complex mathematics and practical commercial reality.

December’s article (Mathematics Today pages 197-199)

The Classical Car Insurance Problem

We will introduce the mathematical concepts with a type of
insurance with which most of you will be familiar. Car insurance
covers you against injuring third parties or damaging their prop-
erty (the policy can also be extended to “Comprehensive” cover,
covering damage to your own car as well). This type of insurance
is an example of “Personal Lines” insurance, i.e. generally sold to
individuals. It is not corporate insurance, but is a useful introduc-
tion to the mathematics of insurance. A typical example of a car
insurance problem might be as shown below:

How much premium would you charge for the following risk?

e 18 year-old male driver
e Drives X-Reg Ford Fiesta, valued at £1,000
e Has 3 penalty points on licence for speeding
e Lives in central London
e Wants third party cover only, for 12 months

Figure 1 The typical car insurance problem

The typical insurance problem may be summarised as follows:

e FEach insured pays a premium (usually different for each insured)
to the insurer

o The premium is charged in advance and is fixed at the outset of
the policy

o The insurer will then pay for all damage caused by the insured to
third parties (and their property) during the policy period
(usually the following 12 months)

In simple terms, the usual constraints are as follows:

o We only have very limited data about the “behaviour”/claims
history of previous identical (or similar) insureds

o The policy may cover very large claims, the size of which have not
occurred before for that type of insured

o If the premiums are set too high, we will not sell any (or enough)
policies; if the premiums are set too low, we could become insol-
vent, or fall below any minimum “capital adequacy” require-
ments set by Regulators (as described later)

For now, we will ignore the need by the insurer to make a profit;
we will return to this issue at the end of this article. We will
instead focus on the issue of setting equitable premiums across all
insureds to cover all (expected) claims.

The Typical Multivariate Solution
This problem is typically solved as a multivariate problem, that is
to estimate the claim frequency and claim severity for each com-
bination of factors (such as age of driver, value of car etc) based
primarily on the past claims data for similar insureds.
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The advent of significant computing power in the 1980s led to
the widespread use of the Generalised Linear Interactive
Modelling (GLIM) package, using Generalised Linear Models.
A seminal Institute of Actuaries paper in 1992 [1] set out the
following typical model structure.

Set of data values Yifori=1,2,.... n (e.g. claim frequency) for the ith
combination of rating factors.

E(Y:)= m;and Var(Y;) = Q - V( mu; )/w;

mu; has the form mu; = h( z)

h() is some known monotonic function

z; is a linear function of the unknown parameters of the model ;

V() (the variance function) is known

w; (the prior weights) are known

the constant factor Q is not necessarily known

the random components of Y; for i= 1 ... n are mutually independent.

Figure 2 Structure of Typical Generalised Linear Model (GLM)

Having a modelling framework (and a fast computer!) is all very
well, but what to model as predictive factors for claim frequencies
and claim severities? When car insurance policies are sold,
certain information is collected about the insured (for example,
age of driver, make/model of car, number of miles driven, home
postcode, number of claim-free years etc.). But some further
thought is required before hasty modelling.

Some of these factors may be highly correlated (e.g. young
drivers are unlikely to have a high number of claim-free years)
whereas some factors may be proxies for “true” predictive factors
which have not been collected (e.g. home postcode may be a
proxy for affluence, i.e. wealthier people may be less inclined to
claim for small amounts —i.e. a lower claim frequency - whereas
less affluent people may be more inclined to “get value for
money” from their policy). In addition, some factors are virtually
(or totally) prohibited from use by Discrimination laws e.g. race,
religion, sexual orientation, disabilities etc. Indeed there was
recently an attempt by the European Union (“EU”) to ban the
use of sex as a rating factor, i.e. the EU wanted there to be no dif-
ference between premiums charged to a man and a woman
driving the same car in the same postcode etc. So the information
that you are allowed to collect at the point of sale can change over
time, meaning that the predictive factors used in your modelling
can change over time.

Over time, some car insurers have introduced more socio-
economic rating factors, by asking questions such as marital
status, number (and ages) of children, number of cars in house-
hold, number of properties owned and whether you are a home
owner or a tenant. Of course, unless the insurers had been col-
lecting this information historically at the point of sale, then
there is no historic data classified into these categories! In these
cases, insurers have to “back-fit” their historic data into these
new categories by using other information sources such as census
information and wider socio-economic classification databases.

Conversely, some insurers have taken the opposite approach;
they want to speed up the sales process by significantly reducing
the number of questions. In a real-life case, one corporate insurer
client of mine wanted to ask only 2 questions at the point of sale
(one of which was “what is your home postcode?”, the other
question we will leave you to think about!), before offering you a




premium for your car insurance. Clearly, in this case, there exists
significant potential for cross-subsidies in the premiums, and
hence premiums which are out of line with other insurers, leading
to “too many” or “too few” policies being sold.

Of course, the “real” predictive factors are unknown; accidents
are often caused by complex human interactions which may not
be predictable using current data; there is even talk of the process
of genetic testing one day identifying a human “risk-taking”
gene, thus “predicting” who is likely to be a “good” or “bad”
driver; such genetic tests could become a requirement for a dis-
count on your car insurance although this is certainly many
years, perhaps decades, into the future. So there is uncertainty
about the predictive power of any GLM for car insurance; this
uncertainty is often modelled using simulation techniques,
parameter confidence intervals, bootstrapping and Bayesian
methods, which are all used with the aim of attempting to quan-
tify the uncertainty, and hence charging an appropriate premium
to reflect the level of uncertainty.

Commercial Lines (“Corporate”) Insurance
We will now turn to corporate insurance policies; these are sold to
companies usually covering multiple risks (e.g. Motor Fleet
insurance, covering many cars under the same policy). Such poli-
cies are also known as “Commercial Lines” policies.

The total assets (and hence the potential sizes of claim) of a
single global corporation can easily exceed £1 billion, which
exceeds the underwriting capacity of any single insurance
company. Therefore, the coverage must be shared between a
number of insurance companies. Some insurers will only be inter-
ested in certain aspects of the risk (e.g. fine art collections, off-
shore oil rigs, factories etc.). Each potential insurer must decide
whether or not it wishes to underwrite part of the risk and, if so,
at what premium and for what percentage (of the Total Insured
Value) it wishes to cover.

Itis not uncommon for as many as 50 insurers to share such a £1
billion risk between them (with each insurer typically taking its
own individual share — it is not as easy as each insurer just taking
1/50th of the risk!). Put another way, each insurer will have its
own mathematical model of the risk, leading to a different
premium for the same risk. Corporate insurance premiums are
therefore often subject to intense negotiations.

Typically, companies will accept an “excess” of anything from
¢£50,000 per claim to £50million (or more) per claim, depending
upon their balance sheet strength; in other words, the insurer
only pays for claims above these high amounts, i.e. the distribu-
tion of claims to the insurer can be severely truncated. In the
extreme (real-life) case of a £50million excess per claim, the
insurer will only pay out for claims over £50million; this is typi-
cally known as CAT (“Catastrophe”) cover and presents consid-
erable mathematical challenges.

Commercial lines policies thus add several layers of complexity
to the mathematics of corporate insurance; these complexities
are summarised in Table 3.

Why Multivariate Methods Usually Fail

The obvious approach is to extend the multi-variate (GLM)
approach (as almost universally used in all types of personal lines
insurance e.g. car insurance, home insurance, travel insurance
etc.) to the more complex risks of corporate insurance. Whilst
GLM approaches are gaining popularity with increasing com-
puting power, there are features of corporate insurances which

Table 3: Personal Lines Insurance

Personal Lines Insurance

vs Commercial Lines Insurance

Commercial Lines Insurance

Premiums typically £100-£2,000

Premiums typically
£1 million-£50 million

Policy excess typically
£100-£1,000 per claim; insurer’s
claims distribution only mildly
truncated

Policy excess typically £50,000-
£50million (or more) per claim;
insurer’s claims distribution
severely truncated and may
cover “catastrophic” claims
only (CAT cover).

Maximum claim from a single
insured probably c£10 million

Maximum claim from a single
insured probably c£10 billon+
(e.g. oil pollution, catastrophic
explosion, release of toxic/
radioactive materials etc)

Usually single risks

Multiple risks in many
countries, constantly changing
over time (e.g. property
acquisitions and disposals,
property re-valuations,
currency movements)

Usually relatively small risks —
any one insured typically does
not dominate the insurance
market for that type of risk

A single global corporation can
easily own more than £1 billion
of assets, which exceeds the
underwriting capacity of any
single insurer

Risks relatively homogeneous

Very diverse risks (e.g. ranging
from office blocks to nuclear
installations, for a single
insured)

Whole risk usually placed with
one insurer

Whole risk can be placed with
as many as 50 different insurers

The proposal form (the
description of the risk or the
“Risk Profile”) is typically quite

The Risk Profile can be highly
detailed, perhaps 100-200 pages
for a global corporation

straightforward, perhaps 3-4
pages at most

Commercial lines insurances present many more challenges to
mathematicians

make such methods difficult to use reliably. We will illustrate
these difficulties using 3 different types of corporate insurance,
namely Property Catastrophe (CAT) Cover, Medical Malprac-
tice and Employer’s Liability.

Property Catastrophe (CAT) Cover

Property CAT typically covers property claims in the extreme tail
of the underlying distribution; in the real-life case noted earlier
of a £50million excess per claim, the insurer is providing cover of
(say) up to £1billion but only for claims over £50million. Such
claims can easily be caused by earthquakes, tsunamis, explosions
etc, and are clearly extremely rare. Put another way, there is very
little historic claims data for events of this size, thus GLM
approaches fail due to the extreme sparsity of data within the
homogeneous factor sub-groups.

Probability distributions for such rare events are often mod-
elled using Generalised Pareto Distributions (GPDs) or
Generalised Extreme Value (GEV) distributions fitted to the very
limited historic data. GPDs and GEVs are an evolving area of
mathematical research; inevitably, as more rare incidents occur,
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the GPDs and GEVs are refined to produce more accurate
results.

As a practical example, GEVs can be used to predict very
approximately where and when earthquakes might be due. GEVs
suggest a theoretical maximum intensity of around 8.6 [2] on the
Richter scale. This theoretical maximum is supported by current
geophysical evidence that earthquakes occurring above this level
would release so much localized energy that plastic, rather than
brittle, deformation of the surrounding rocks would be caused.
Thus current geophysical evidence supports the idea that GEV
models are of some benefit in forecasting localized earthquake
magnitudes.

Figure 4 shows some generalised GPD and GEV functions.

Generalised Pareto Distribution (GPD)
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Figure 4 Tools for Extreme Values

Medical Malpractice Cover
This type of cover is usually bought by hospitals (or Hospital
Trusts in the UK), to provide compensation in the event of an
“unwanted medical outcome” due to a surgical mistake. In other
words, if a surgeon errs negligently (which leads to pain, suffer-
ing etc for the patient) the hospital’s insurance policy will pay
compensation to the patient.

Sparsity of claims is not a problem for this type of cover —
recent figures from the NHS show that £560 million was paid out
in negligence claims against the NHS in 2005/06 [3].

The main problem is the very high risk surgeons; it may be sur-
prising to know that brain surgery, whilst inherently high risk, is
not the main cause of insurers’ problems for this type of cover;
since such surgery is inherently high risk, and it is usually the
patient’s choice to take this high risk, claims for negligence for
brain surgery are relatively rare.

The biggest problem for insurers of this type of risk is obstetri-
cians (doctors who specialise in pregnancy and childbirth) and
also midwives [4], for the following reasons:
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o Whatever the medical risk, the patient usually has no option but
to have the baby delivered at some point

o A surgical mistake during a birth can result in a highly brain
damaged baby; the costs of caring for such a child for the rest of
its” life (ie. the compensation payable by the insurer) usually
runs into millions of pounds, over perhaps 20-30 years

o Such “mistakes” can take many years after the birth to be fully
identified; in many cases it is not until the child turns 18 years of
age that a claim is finally made against the surgeon, i.e. 18 years
after the surgical procedure

* Medical malpractice policies usually cover surgeons on a so-
called “claims made” basis, i.e. they are covered for any claims
made against them today, even if the underlying surgery took
place many years earlier. Thus, for obstetricians, the insurer
today is at risk of claims being made for surgical procedures
carried out by that surgeon over the past 20 years or so (even if
the surgeon was insured by a different insurer at the time of the

surgery)

Due to the very long reporting delays for these types of claims
and the very long period of time over which claims are paid,
complex GLM models are out of place.

There is therefore tremendous uncertainty both in claim
frequencies and claim severities for insurers of such surgeons.
This is reflected in extremely high premiums, “alternative” gov-
ernment schemes for public sector surgeons (e.g. the UK NHS
Litigation Authority, “the NHSLA”) and the development of
“no fault” compensation schemes in other countries.

Employer’s Liability
This type of cover must be bought by all employers to provide
compensation in the event of an employee having an accident at
work due to an employer’s negligence.

The main problem is asbestos-related claims, and in particular,
mesothelioma claims, which have caused the downfall of a
number of corporate insurers. From the onset of mesothelioma,
an unpleasant death usually follows within 12 months, with little
hope of improvements in life expectancy in the future.

The annual number of mesothelioma deaths has increased con-
siderably over the period for which statistics are available, reach-
ing 1969 deaths in 2004, the latest year for which data are
available, compared with only 153 deaths in 1968. The latest
projections [5] suggest that the annual number of mesothelioma
deaths in Great Britain will peak at around 1950 to 2450 deaths
some time during the period 2011 to 2015.

However these claims have generally arisen out of periods of
employment in the 1950s and 1960s. During these years, asbestos
was seen as the “wonder fibre”, with amazing fire retardant prop-
erties which led to it being used extensively for fire protection, for
example in the ship-building industry. It was only in the mid-
1960s that the health effects began to be identified and it was not
until the early 1970s that restrictions were put on its use.

Mesothelioma is the only asbestos-related disease which can
remain dormant in the body for at least 30 years, from which
point the disease can develop over the next 10 years or so; typi-
cally employees who were “exposed” to asbestos dust in their 20s
do not develop the disease until their 60s or 70s. In other words
insurers in the 1950s and 1960s are today facing claims from
employers they insured perhaps as long as 50 years ago. Mesothe-
lioma claims usually cost at least £100,000 each, due to the
unpleasantness of the disease, and there are usually complex



Predicted number of mesotheliomas at age 4 in year 7(F 1)
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Where
P41 person years for age 4 in year T
D overall population exposure in year T:
Dxr proportion of occurring mesotheliomas diagnosed in year T
W4 age specific exposure potential at age A4:
L lag period (in years) before effect starts:
H  half life (in years) for clearance of asbestos from lungs:

k exponent of time modelling increase of risk with increasing time from
exposure;

M  total observed mesotheliomas:

The content of the { } is set to zero when negative: and
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Figure 5 HSE model for mesothelioma claims

legal arguments over the precise meaning of the policy wordings,
claim sharing between different employers and so on.

There have been various mathematical/epidemiological models

over the years to try to forecast future claims, an example of
which is the current Health & Safety Executive model shown
above [0].
Thus it can take c40 years for all asbestos-related claims to be
reported from a given year of insurance cover; indeed it is a
current statutory requirement for employers to keep copies of
their employer’s liability insurance certificates for 40 years for
precisely this reason. Although asbestos is not used to the same
extent today, insurers are wary of other similar “dormant” dis-
eases which may be caused by employment conditions; perhaps
work-related stress, repetitive strain injury, “sick building syn-
drome”, wireless offices etc etc will be the “new” asbestos
problem for insurers in 40 years’ time?

Therefore, as it can take perhaps decades for all claims to be
reported from a given year of insurance, complex GLM models
are out of place.

Making a Profit

Insurers operate in the commercial world; they are risk-takers,
charging premiums to cover unknown, but potentially very large
(potentially up to £billions) future events but they are ultimately
in business to make a profit. In general, insurers can charge what-
ever premiums they like, there is no regulatory intervention (in
the UK at least) setting minimum or maximum levels of premium
for a given policyholder. Various complex models of return on
capital, expenses and investment returns are used to develop
profit margins to add to premiums, and these are often modelled
stochastically, due to the long claim payment delays.

Of course, from the insurer’s perspective, the profit on a single
policy is maximised if it charges a high premium, but, due to com-
petition, not many policies may be sold at that price. Conversely
premiums which are too low could threaten the insurer’s capital
adequacy and hence its” approval from the regulator to trade.

The insurance regulator in the UK (the Financial Services
Authority, FSA) sets minimum levels of capital each insurer
must hold on an insurer-by-insurer basis in order to allow
the insurer to continue trading; capital is essentially the “spare”
cash the insurer has after meeting its expected liabilities.
These Individual Capital Adequacy Standards (“ICAS”) have

developed in sophistication over the past few years; current
standards are based on 99.5th percentiles of complex joint distri-
butions. In other words, insurers must hold sufficient capital to
remain solvent over a 12-month period at the 99.5th percentile of
the joint aggregate distribution across all of its assets and
liabilities.

Copulas are of immense value in estimating the overall joint
distributions; they are a simpler mathematical form of multi-
variate probability distributions and contain the whole informa-
tion about the variables’ dependency structure.

Actual Premiums

The definition of a copula is a function C: [0,1]N - [0,where:
(a) there are random variables U, .... ,Uy taking values in [0, 1]
such that C is their distribution function; and
(b) C has uniform marginal distributions, i.e. for all i <N, u; O[0,1),
we have:C(1....1u;, 1. 1) = u;.

The basic rationale for copulas is that any joint distribution F of
a set of random variables Xj,.... X},
Le F(x)=PX <X, Xp £ Xgpoet Xy S Xy ) s
can be separated into two parts. The first is the marginal
distribution functions, or marginals, for each random variable in
isolation, i.e. F;(.) where F;(x) = P(X;x). The second is the copula
that describes the dependence structure between the random
variables. Mathematically, this decomposition relies on Sklar’s
theorem, which states that, if X;,....,X)y, are random variables with
marginal distribution functions F,,....,Fy and joint distribution
function F, then there exists an N —dimensional copula C such
that, for all x ooN:

F (x) = C(Fy(x4),Fp(x3),...Fy (X)) = C(F (x))

i.e. Cis the joint distribution function of the unit random variables
(F1(x4),Fo(x5),.....Fy (Xy ). If Fy,....,Fy are continuous, then Cis
unique.

Figure 6 Copulas

In the world of insurance, having a (probabilistic) range of pre-
miums is no good; we must quote a single premium for the risk
and generally the premium is fixed once quoted, so we do not
have a second chance if we are wrong.

The actual real-life premiums in the examples above depend on
a huge amount of detailed risk information which is not shown
here for brevity, but to give you an idea, here are “typical” annual
premiums for the risks we have looked at:

o 18-yr old driver with 3 penalty points: £1,000 - £5,000 [7]

» Property CAT: £1bn of cover for claims over £50m: £10million -
£20million

* Medical Malpractice cover: £1,000 - £200,000 per surgeon

o Employer’s Liability: £50 - £500 per employee

Summary

Insurers are risk-takers, accepting premiums to cover unknown,
but potentially very large, future insured events. Insurance is a
finite resource, and therefore comes at a “price”. Due to the com-
plexity and size of corporate risks, the very limited historic
claims data for very large claims and the need to estimate extreme
tails of complex joint distributions to satisfy regulators, the
mathematics of corporate insurance is especially challenging.
However, insurers have to balance the theoretical mathematics
with commercial considerations; they must be profitable but yet
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offer commercially acceptable premiums whilst at the same time
satisfying minimum regulatory capital requirements.

New risks are emerging all the time; for example, telecommuni-
cations companies often require “Business Interruption” insur-
ance in the event of network failure causing them to pay
compensation to their customers. The recent IMA conference
“The Mathematics of Signal Processing” gave useful insights into
the mathematics of network reliability, signal quality etc for this
emerging area of risk. Future IMA conferences on “Industrial
Reliability” and “Flood Modelling” are also of relevance for
“Business Interruption” coverage for large industrial operations
and “Commercial Property” insurance for companies with oper-
ations located in flood prone areas.

In addition, with the relatively recent “compensation culture”,
new legal precedents and increasingly complex regulatory
capital requirements, even “old” risks are not as simple as they
used to be![]

letters

‘Brittle knowledge’
just wanted to congratulate David Broomhead on his April
Editorial.

As the last of Fergus Campbell’s research students, I know that
he would have really appreciated the comments on the Campbell
and Robson paper. He would also have been 100% in support of
the remarks about not teaching just to enable students to pass an
exam. His view was that with excellent teaching, exams became
largely irrelevant.

Sadly, teaching is not uniformly excellent, especially in mathe-
matics. Fear is indeed widespread, not just among students: it’s a
barrier to progress in every field where the ability to think cre-
atively is required. Thinking itself implies a risk, of course, which
is often too great for institutions to contemplate, so they follow
the set procedures and achieve guaranteed mediocrity — ‘brittle
knowledge’” as Feynman called it.

Teaching seems so rulebound now that trying to explain any-
thing not strictly required for some exam is often impossible.
Similarly, schools are unable to make use of my modest attempts
to volunteer to help teach maths and physics -because I'm not a
‘qualified teacher.’

We are letting young people down badly by conforming to rules
which limit real education.

Patrick Andrews CMath MIMA, CSci
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Continual Emphasis
was very interested to read the Editor’s comment in the April
issue of Mathematics Today on the fear of mathematics
among his optometry students.

It seems to me this is inherent in the nature of the subject.
Mathematicians enjoy the subject as they model a problem and
use their skills and ability to find an answer. This means it is fair
to test trainee mathematicians with some examination questions,
but not all, that need ingenuity in their solution. However, such
questions are not suitable for anyone who only needs to follow a
presented mathematical argument. Such students can be consci-
entious in their studies, but when it comes to problems they often
do not know how to begin. Hence the fear and frustration as they
know they have tried to study diligently. Mathematics is very dif-
ferent to many other subjects in this respect. If for example a
history student has studied revolutions then they know for
certain that something can be written about any particular event.
Of course they may find it extremely difficult to give a good
answer if asked to contrast the English, American, French and
Russian revolutions. So history has its own difficulties, but the
student can do something. This is not always possible with a
mathematics question, particularly in a limited time. So these
students need very carefully constructed examination questions,
which might include a guided solution of a problem. The illustra-
tion of —2(=1)" =2(=1)"*! is perfectly reasonable in a clearly
designated question on indices. Teaching should be directed
towards reading mathematics and as the students gain the ability
to understand this language so they should get satisfaction.

Thave no doubt these comments are very familiar, but they need
continual emphasis.[]

Robert J. Clarke CMath FIMA



